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Criteria for an ideal Higgs theory

• The theory should predict a Higgs with SM coupling-squared to WW, ZZ

and with mass in the range preferred by precision electroweak data. The

latest plot is:
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At 95% CL, mhSM
< 160 GeV and the ∆χ2 minimum is near 85 GeV when

all data are included.

The latest mW and mt measurements also prefer mhSM
∼ 100 GeV.

The blue-band plot may be misleading due to the discrepancy between

the ”leptonic” and ”hadronic” measurements of sin2 θeff
W , which yield

sin2 θeff
W = 0.23113(21) and sin2 θeff

W = 0.23222(27), respectively. The

SM has a CL of only 0.14 when all data are included.

If only the leptonic sin2 θeff
W measurements are included, the SM gives a fit

with CL near 0.78. However, the central value of mhSM
is then near 50 GeV

with a 95% CL upper limit of ∼ 105 GeV (Chanowitz, xarXiv:0806.0890).

• Thus, in an ideal model, a Higgs with SM-like ZZ coupling should have

mass no larger than 105 GeV. Our generic notation will be H.

But, at the same time, It should avoid the LEP limits on such a light Higgs.

One generic possibility is for its decays to be non-SM-like.
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Table 1: LEP mH Limits for a H with SM-like ZZ coupling, but varying
decays.

Mode SM modes 2τ or 2b only 2j W W ∗ + ZZ∗ γγ /E 4e, 4µ, 4γ
Limit (GeV) 114.4 115 113 100.7 117 114 114?

Mode 4b 4τ any (e.g. 4j) 2f + /E
Limit (GeV) 110 86 82 90?

To have mH ≤ 105 GeV requires one of the final three modes.

• Perhaps the ideal Higgs should be such as to predict the 2.3σ excess at

Mbb ∼ 98 GeV seen in the Z + bb final state.

The simplest possibility for explaining the excess is to have B(H → bb) ∼
0.1B(H → bb)SM (assuming H has SM ZZ coupling).

• All of this can be accomplished in the NMSSM with no fine-tuning, ...., but

for now I wish to be more general and only look at the generic possibility

of suppressing the H → bb branching ratio by having a light a (ma < 2mb

to avoid LEP Z + b′s limits) with B(H → aa) > 0.7 (easy to achieve,

e.g., in 2HDM-II models).
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Constraints on a from LEP and Upsilon Decays

We will be especially interested in an a with ma < 2mb and modest abb

coupling.

• Of particular importance is the constraints on Cabb, where the generic Caff

is defined by

Laff ≡ iCaff

ig2mf

2mW

fγ5fa . (1)

We will only discuss models in which Cabb = Caµ−µ+. (To escape, requires

3 or more doublets.)

The most useful current limits on Cabb for a light a come from CUSB-II

(old 90% CL) limits on B(Υ → γX) (where X is assumed to be visible),

recent CLEO-III limits on B(Υ → γa) assuming a → 2τ , OPAL limits on

e+e− → bba → bb2τ and DELPHI limits on e+e− → bba → bbbb.

(The Tevatron limits on bba → bb2τ apply for quite high ma, beyond the

region we wish to focus on.)
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The CLEO-III limits are now particularly strong.

Figure 1: Limits on B(Υ → γτ+τ−).
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• For the most part the extracted Cabb limits are quite model independent

other than weak dependence on up-quark couplings (mostly top in gg

coupling loop) through B(a → ττ) and B(a → bb). The extracted limits

appear in Fig. 2,

Figure 2: Limits on Cabb.
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The most unconstrained region is that with ma > 8 GeV, especially

9 GeV < ma < 12 GeV.

In the ∼ 9 GeV <∼ ma <∼ 12 GeV region only the OPAL limits are relevant.

Those presented depend upon how the a ↔ ηb states mixing is modeled.

A particular model is employed, but there has been little recent work on

this.

J. Gunion Fermilab BSM Tevatron/LHC Meeting, September 18, 2008 8



Constraints from Tevatron and LHC

• However, we (JFG+Dermisek) have recently discovered that Tevatron data

on the di-muon spectrum also has an impact.

In particular, a recent CDF analysis has been directly employed to place a

90% CL upper limit on σ(ε) × B(ε → µ+µ−), where the ε is some narrow

resonance, relative to the measured σ(Υ) × B(Υ → µ+µ−).

The histogram shown in the following figure is the CDF result.

In the figure, the predictions for the cross section ratio for the a are: red

crosses=tan β = 1, blue diamonds=tan β = 2, green crosses=tan β = 3.

Fortunately, the a and Υ cross sections are quite flat in y and only small

|y| production is kept in the experimental analysis.

The a predictions employ the HIGLU program of Spira, Djouadi etal and

agree with my own independent program.
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Figure 3: 90% CL limits on σ(a)B(a→µ+µ−)
σ(Υ)B(Υ→µ+µ−)

at small |y| for L = 630 pb−1, compared to

expectations for the a.
Why CDF stopped at 9 GeV is not clear to me. It would certainly be very

useful to at least go all the way to BB threshold (and perhaps a bit beyond

since the complexity of the threshold region is such that the LEP limits on

a light h → aa might still be obeyed for ma somewhat above threshold).
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Of course, as more integrated luminosity is accumulated, limits will improve.

Figure 4: 90% CL limits on σ(a)B(a→µ+µ−)
σ(Υ)B(Υ→µ+µ−)

at small |y| for L = 8 fb−1.
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• Now use interpolation to turn the 630 pb−1 limits into limits on Cabb.

Figure 5: Limits on Cabb including those from the Tevatron analysis.

The Tevatron limits are the best for ∼ 8 GeV < ma < ∼ 9 GeV.

There is one caveat. In the CDF analysis, the µ’s are required to be
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isolated. Radiative corrections include some g radiation diagrams. The

extent to which this would cause the µ’s to not be isolated would require

a detailed MC. If you keep only virtual NLO diagrams, then the K ∼ 2.5
factor for full NLO declines to about K ∼ 2 and limits are a bit weaker.

• What about the LHC?

This requires work. New issues include:

1. Triggering on soft muons.

Probably a recoiling jet is required to boost the µ momenta.

2. bb backgrounds will be bigger than at the Tevatron.

3. Muon isolation is clearly trickier, especially at higher luminosity.

4. Interestingly, early low L running might provide the optimal situation

since you can simply take all data and then work on it.

An interesting plot from ICHEP is shown below.
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Figure 6: LHC di-muon slide from ICHEP.
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After cuts (including requiring high pT for the di-muon pair) the study

finds about 4000 events for each L = 1 pb−1. Early running at low L will

probably give about 100 pb−1 (Jeffrey Berryhill’s talk), implying about

400, 000 LHC events.

For 630 pb−1, the CDF analysis retained 52, 700 events. For 8 fb−1 one

gets 669, 206 events (assuming simple L scaling), and so it is not clear if

LHC will do better given that their criteria retain some bb background in

addition to the Drell-Yan events that are the only Tevatron background.

5. Can CMS find a way to do low mass di-muons when running at high L?

Well, of course you can reduce your trigger rate by requiring large pT ,

but backgrounds might become more insidious.

6. Could LHCb do better?
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Implications for aµ

• Let us accept the current limits on Cabb.

• An interesting question is whether there is any possibility that a light a

could be responsible for the observed aµ discrepancy which is of order

∆aµ ∼ 30 × 10−10.

• The maximum possible value of δaµ from the a, corresponding to the

maximum allowed Cabb, as a function of ma for fixed values of R2
b/t =

Cabb/Catt and for the 2HDM-II R2
b/t = tan2 β case are shown in Fig. 7.

One sees that it is quite improbable that a light a could explain ∆aµ.

Only in the small window in ma from about 8 GeV (9.5 GeV for 2HDM-II)

up to ∼ 12 GeV, where Cabb limits are the weakest (Cabb
<∼ 15 − 60),

might it be possible.
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Figure 7: Results for δamax
µ from a CP-odd a for various R2

b/t = Cabb/Catt models are

plotted after incorporating the Cabb experimental limits. Curves are for Rb/t = 1, 3, 10, 50
and for the 2HDM-II prediction of Rb/t = tan β (which looks like Rb/t = 50 at large ma

and is the isolated red curve at low ma.)
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The NMSSM Context

Recall:

• The NMSSM is the simplest theory for which a light (mh1 < 105 GeV)

Higgs boson with SM-like ZZ coupling (perfect for electroweak precision

data) is possible and that for such mh1 one does not have to fine-tune the

high scale (e.g. GUT-scale) parameters of the theory.

• Such an h1 escapes LEP limits if h1 → a1a1 is large and ma1 < 2mb.

• In the NMSSM context, a phenomenologically important quantity is cos θA,

the coefficient of the MSSM-like doublet Higgs component of the a1:

a1 = cos θAAMSSM + sin θAAS . (2)

• To achieve the desired a1 properties can require some fine-tuning. A
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measure is G.

Figure 8: G vs. cos θA for M1,2,3 = 100, 200, 300 GeV and tan β = 10 from

µeff = 150 GeV scan (left) and for points with F < 15 (right) having ma1 < 2mb

and large enough B(h1 → a1a1) to escape LEP limits. The color coding is: blue =

ma1 < 2mτ ; red = 2mτ < ma1 < 7.5 GeV; green = 7.5 GeV < ma1 < 8.8 GeV;

and black = 8.8 GeV < ma1 < 9.2 GeV.

Note:
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1. The blue +’s, which are the points with ma1 < 2mτ , have rather large

G and tend to require precise tuning of Aλ and Aκ (the relevant soft

parameters) at scale MU .

2. Really small G occurs for ma1 > 7.5 GeV and cos θA ∼ −0.1.

As we have seen, 9 TeV < ma1 < 2mb is poorly constrained by Υ
decays, but the Tevatron provides some constraints.

For instance, the small G scenarios with ma1 in this region have

Cabb ∼ cos θA tan β ∼ −1. (3)

3. Fortunately, there is a lower bound on | cos θA|, see Fig. 8. It arises

because B(h1 → a1a1) falls below 0.75 for too small | cos θA|.
As a result, Cabb can never be too far below 1.

• A convenient way to visualize the impact of experimental constraints in the

NMSSM case is to plot the maximum value of cos θA that is allowed as a

function of ma1 for various fixed tan β values.

The result is Fig. 9.
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Figure 9: The maximum value of | cos θA| as a function of ma1 for tan β = 1, 3, 10, 50.

Taking the blue tan β = 10 curve as an example, you will see that

cos θmax
A ∼ 0.16 at ma1

<∼ 9 GeV. With 8 fb−1 of Tevatron data, the

projected limits are just on the verge of constraining our most ideal small-G
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scenario for tan β = 10 which has tan β cos θA = −1 and is represented

by the yellow squares of Fig. 10 (a repeat of Fig. 4).

Figure 10: 90% CL limits on σ(a)B(a→µ+µ−)
σ(Υ)B(Υ→µ+µ−)

at small |y| for L = 8 fb−1.

J. Gunion Fermilab BSM Tevatron/LHC Meeting, September 18, 2008 22



(Small changes relative to the red pluses of tan β = 1 occur because of

re-weighting of the top loop in gg → a fusion.)

Of course, if K ∼ 2 vs. the K ∼ 2.5 used in the plot applies then the

constraint is more marginal.

Hopefully, D0 will weigh in with a result that can be combined with CDF.

And, hopefully, both will extend their results above 9 GeV to cover all the

way up to ma1 = 2mB and somewhat above, thereby completely covering

the region for which an ideal Higgs scenario is possible and Υ decays can

never access.

• NOTE: Dermisek will talk about low tan β < 2 NMSSM scenarios.

One finds that G is quite small if cos θA ∼ −0.5, which would imply that

the corresponding yellow squares would be lower by a significant factor

(of 2 − 3 — rates scale roughly as (cos θA tan β)2 since for low ma1 the

bottom loop dominates the gga1 coupling for tan β > 1).
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Conclusions

• A light a with ma < 2mb of the ”ideal” Higgs scenario with mh < 105 GeV
(escaping LEP limits because B(h → aa → 4τ ) is large) might be

discoverable in the di-muon spectrum at the Tevatron or LHC.

• Alternatively, the Tevatron and LHC might be able to place limits on the

Cabb of a light a that would be difficult to reconcile with a specific model.

This appears to be within reach even for the most preferred small-cos θA,

ma <∼ 2mb high-tan β NMSSM models.

Already, the less preferred (i.e. largish G) larger | cos θA| models in the

high-tan β NMSSM scenarios are being ruled out over part of the relevant

mass region beyond that accessible in Υ decays.

Potentially, the hadron colliders could go to higher di-muon masses and

they definitely should.
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• Having both Υ decay and hadron collider data appears to be crucial.

The former covers the low ma region (where the di-muon Drell-Yan

background overwhelms the hadron collider a → µ+µ− signal and muon

triggering becomes hard).

The latter is the only way (and apparently a viable way) to access the

higher ma <∼ 2mB and above threshold regions.

• If we were to see an a with the right properties, this would give enormous

impetus to focusing on the pp → pph and WW → h with h → aa → 4τ

search modes.

• For a generic 2HDM-II model, there is only a small 10 GeV < ma < 12 GeV
window left for which the a might explain ∆aµ and this is possible only if

Cabb = tan β is large.

It would appear that extending the hadron colliders to high enough ma to

rule this out is possible.
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• In the NMSSM:

The preferred NMSSM models do not have large Cabb = cos θA tan β

coupling.

Instead, small-G models with high tan β have small cos θA for which

Cabb = cos θA tan β <∼ 1.

At low tan β, cos θA is large (| cos θA| ∼ 0.5) for the small-G preferred

models, but Cabb ∼ cos θA tan β has magnitude <∼ 1.
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